光學顯微鏡分類
作者:admin 瀏覽量:531 來源:本站 時間(jian):2022-04-09 21:47:45
信息摘要:
光(guang)(guang)學(xue)顯(xian)微(wei)鏡(jing)有多(duo)種分(fen)類方法:按(an)(an)使用目(mu)鏡(jing)的數目(mu)可(ke)(ke)(ke)分(fen)為(wei)雙目(mu)和單目(mu)顯(xian)微(wei)鏡(jing);按(an)(an)圖像(xiang)是否有立體(ti)感(gan)可(ke)(ke)(ke)分(fen)為(wei)立體(ti)視覺和非立體(ti)視覺顯(xian)微(wei)鏡(jing);按(an)(an)觀察對像(xiang)可(ke)(ke)(ke)分(fen)為(wei)生物(wu)和金相顯(xian)微(wei)鏡(jing)等;按(an)(an)光(guang)(guang)學(xue)原理可(ke)(ke)(ke)分(fen)為(wei)偏光(guang)(guang)、相襯和微(wei)差干涉對比顯(xian)微(wei)鏡(jing)等;按(an)(an)光(guang)(guang)源(yuan)類型可(ke)(ke)(ke)分(fen)為(wei)普通光(guang)(guang)、熒光(guang)(guang)、紫外(wai)光(guang)(guang)、紅外(wai)光(guang)(guang)和激(ji)光(guang)(guang)顯(xian)微(wei)鏡(jing)等;按(an)(an)接(jie)收(shou)器類型可(ke)(ke)(ke)分(fen)為(wei)目(mu)視、數碼(攝像(xiang))
光學顯微鏡有多種分類方法:按使用目鏡的數目可分為雙目和單目顯微鏡;按圖像是否有立體感可分為立體視覺和非立體視覺顯微鏡;按觀察對像可分為生物和金相顯微鏡等;按光學原理可分為偏光、相襯和微差干涉對比顯微鏡等;按光源類型可分為普通光、熒光、紫外光、紅外光和激光顯微鏡等;按接收器類型可分為目視、數碼(攝像)顯微鏡等。常用的顯微鏡有雙目體視顯微鏡、金相顯微鏡、偏光顯微鏡、熒光顯微鏡等。 
雙目體視顯微鏡又稱"實體顯微鏡"或"解剖鏡",是一種具有正象立體感地目視儀器。在生物、醫學領域廣泛用于切片操作和顯微外科手術;在工業中用于微小零件和集成電路的觀測、裝配、檢查等工作。它利用雙通道光路,雙目鏡筒中的左右兩光束不是平行,而是具有一定的夾角--體視角(一般為12度--15度),為左右兩眼提供一個具有立體感的圖像。它實質上是兩個單鏡筒顯微鏡并列放置,兩個鏡筒的光軸構成相當于人們用雙目觀察一個物體時所形成的視角,以此形成三維空間的立體視覺圖像。 目前體視鏡的光學結構是:由一個共用的初級物鏡,對物體成象后的兩光束被兩組中間物鏡----變焦鏡分開,并成一體視角再經各自的目鏡成象,它的倍率變化是由改變中間鏡組之間的距離而獲得的,因此又稱為"連續變倍體視顯微鏡"(Zoom-stereomicroscope)。隨著應用的要求,目前體視鏡可選配豐富的選購附件,如熒光,照相,攝象,冷光源等等。
2.金相顯微鏡
金相顯微鏡是專門用于觀察金屬和礦物等不透明物體金相組織的顯微鏡。這些不透明物體無法在普通的透射光顯微鏡中觀察,故金相和普通顯微鏡的主要差別在于前者以反射光,而后者以透射光照明。在金相顯微鏡中照明光束從物鏡方向射到被觀察物體表面,被物面反射后再返回物鏡成像。這種反射照明方式也廣泛用于集成電路硅片的檢測工作。
3.偏光顯微鏡(Polarizingmicroscope)
偏(pian)(pian)光(guang)顯微(wei)鏡是用于(yu)研(yan)究所(suo)謂透明(ming)與不透明(ming)各向異性(xing)(xing)材(cai)料(liao)的(de)一(yi)種顯微(wei)鏡。凡具有雙(shuang)折(zhe)射(she)的(de)物(wu)(wu)質(zhi),在偏(pian)(pian)光(guang)顯微(wei)鏡下就能分辨的(de)清楚(chu),當(dang)然(ran)這些物(wu)(wu)質(zhi)也可(ke)用染(ran)色法來進(jin)(jin)行觀察(cha),但有些則不可(ke)能,而要利用偏(pian)(pian)光(guang)顯微(wei)鏡。將普通光(guang)改變為偏(pian)(pian)振光(guang)進(jin)(jin)行鏡檢的(de)方(fang)法,以鑒別某一(yi)物(wu)(wu)質(zhi)是單折(zhe)射(she)(各向同行)或雙(shuang)折(zhe)射(she)性(xing)(xing)(各向異性(xing)(xing))。雙(shuang)折(zhe)射(she)性(xing)(xing)是晶體的(de)基本特(te)性(xing)(xing)。因此,偏(pian)(pian)光(guang)顯微(wei)鏡被廣(guang)泛(fan)地應(ying)用在礦物(wu)(wu)、化學等(deng)領域,在生(sheng)物(wu)(wu)學和(he)植物(wu)(wu)學也有應(ying)用。

4.熒光顯微鏡
熒光顯微鏡是用短波長的光線照射用熒光素染色過的被檢物體,使之受激發后而產生長波長的熒光,然后觀察。熒光顯微鏡廣泛應用于生物,醫學等領域。
熒光顯微鏡一般分為透射和落射式兩種類型。透射式:激發光來自被檢物體的下方,聚光鏡為暗視野聚光鏡,使激發光不進入物鏡,而使熒光進入物鏡。它在低倍情況下明亮,而高倍則暗,在油浸和調中時,較難操作,尤以低倍的照明范圍難于確定,但能得到很暗的視野背景。透射式不使用于非透明的被檢物體。落射式:透射式目前幾乎被淘汰,新型的熒光顯微鏡多為落射式,光源來自被檢物體的上方,在光路中具有分光鏡,所以對透明和不透明的被檢物體都適用。由于物鏡起了聚光鏡的作用,不僅便于操作,而且從低倍到高倍,可以實現整個視場的均勻照明。
目前許多新興生物研究領域應用到熒光顯微鏡,如基因原位雜交(FISH)等等。
5.相襯顯微鏡(Phasecontrastmicroscope)
在光學顯微鏡的發展過程中,相襯鏡檢術的發明成功,是近代顯微鏡技術中的重要成就。我們知道,人眼只能區分光波的波長(顏色)和振幅(亮度),對于無色通明的生物標本,當光線通過時,波長和振幅變化不大,在明場觀察時很難觀察到標本。 相襯顯微鏡利用被檢
物體的光程之差進行鏡檢,也就是有效地利用光的干涉現象,將人眼不可分辨的相位差變為可分辨的振幅差,即使是無色透明的物質也可成為清晰可見。這大大便利了活體細胞的觀察,因此相襯鏡檢法廣泛應用于倒置顯微鏡中。
6.微分干涉對比顯微鏡(DifferentialinterferencecontrastDIC)
微分干涉對比鏡檢術出現于60年代,它不僅能觀察無色透明的物體,而且圖象呈現出浮雕壯的立體感,并具有相襯鏡檢術所不能達到的某些優點,觀察效果更為逼真。微分干涉對比鏡檢術是利用特制的渥拉斯頓棱鏡來分解光束。分裂出來的光束的振動方向相互垂直且強度相等,光束分別在距離很近的兩點上通過被檢物體,在相位上略有差別。由于兩光束的裂距尤小,而不出現重影現象,使圖象呈現出立體的三維感覺。
7.倒置顯微鏡(Invertedmicroscope)
倒置顯微鏡是為了適應生物學、醫學等領域中的組織培養、細胞離體培養、浮游生物、環境保護、食品檢驗等顯微觀察。
由于上述樣品特點的限制,被檢物體均放置在培養皿(或培養瓶)中,這樣就要求倒置顯微鏡的物鏡和聚光鏡的工作距離很長,能直接對培養皿中的被檢物體進行顯微觀察和研究。因此,物鏡、聚光鏡和光源的位置都顛倒過來,故稱為"倒置顯微鏡"。
由于工作距離的限制,倒置顯微鏡物鏡的更大放大率為60X。一般研究用倒置顯微鏡都配置有4X、10X、20X、及40X相差物鏡,因為倒置顯微鏡多用于無色透明的活體觀察。如果用戶有特殊需要,也可以選配其它附件,用來完成微分干涉、熒光及簡易偏光等觀察。 目見倒置顯微鏡廣泛應用于patch-clamp,transgeneICSI等領域。
8.數碼顯微鏡
數碼顯微鏡是以攝像頭(即電視攝像靶或電荷耦合器)作為接收元件的顯微鏡。在顯微鏡的實像面處裝入攝像頭取代人眼作為接收器,通過這種光電器件把光學圖像轉換成電信號的圖像,然后對之進行尺寸檢測、顆粒計數等工作。這類顯微鏡可以與計算機聯用,這便于實現檢測和信息處理的自動化,多應用于需要進行大量繁瑣檢測工作的場合。
目前出現一種便攜式數碼顯微鏡照相機,簡稱數微相機。它將顯微鏡和數碼相機相結合,以同時達到顯微鏡觀察(Micro preview)和顯微攝影(Micro photography)的要求。更高物鏡顯微倍率可達150X,機身小巧,便于攜帶,自備光源,可運用于多種場合。可直接與計算機、打印機(不需要電腦)、電視(不需要電腦)聯用。